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ABSTRACT m 
A generalized formulation of the electronegativity equalization principle is presented 
from the perspective of density-functional theory. The resulting equations provide a 
linear-response framework for describing the redistribution of electrons upon perturbation 
by an external density or applied field. The equations can be solved using a finite set of 
basis functions to model the density response. Applications demonstrate the method 
accurately reproduces dipole moments and chemical potentials obtained from density- 
functional calculations. The method provides high accuracy in the presence of relatively 
strong perturbations such as those arising from interactions with other molecules or 
applied fields, and is "exact" in the limit that these interactions vanish. The method has 
the advantage that accuracy can be systematically improved by inclusion of more 
complete basis functions. The present formulation provides the foundation for a promising 
semiempirical model for polarization and charge transfer in molecular simulations. 
0 1995 John Wiley & Sons, Inc. 

geometry and environment. Density-functional 
theory (DFT) [ 1-41 provides a particularly appeal- 
ing framework for attacking this problem since it 
treats directly the electron density as the basic 

he interaction of atoms and molecules is cen- variable. T tral to chemistry. Of fundamental importance Unfortunately, the computational requirement 
to understanding and predicting molecular inter- inherent in conventional ab initio density- 
actions is a reliable description of the electron functional methods precludes application to very 
density. In particular, it is useful to know how the large molecular systems [51, especially when cou- 
electron density responds to changes in molecular pled with extensive sampling of configuration or 
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phase space. Consequently, for these systems, ap- 
proximate methods that are less computationally 
demanding are required. 

One class of methods that address this difficulty 
is based on the principle of electronegativity equal- 
ization (EE) [61. Density-functional theory provides 
a rigorous mathematical definition for many intu- 
itive chemical concepts such as electronegativity 
[7] and chemical hardness [8,9], and is the founda- 
tion of the EE principle. Parr et al. [lo] have 
identified the electronegativity as the negative of 
the chemical potential. Analogous to macroscopic 
thermodynamics, the chemical potential of an 
equilibrium ground-state electronic system is 
everywhere equal (a constant) 1111. The idea be- 
hind the EE methods, as the name suggests, is that 
when atoms or molecules interact, the electronega- 
tivity (chemical potential) must equalize. From 
the viewpoint of density-functional theory, this 
follows directly from the variational condition for 
the ground-state electron density [ll. 

Electronegativity equalization was first pro- 
posed by Sanderson [6] as a scheme for predicting 
atomic charges in molecules based on the elec- 
tronegativity differences of the atoms before and 
after equalization (molecule formation). However, 
charges predicted from this method do not distin- 
guish between atoms of the same type. Later, 
Gasteiger and Marsili [12] introduced an iterative 
method for determining atomic charges based on 
partial equalization of orbital electronegativities 
[ 131. A major advance was realized with the devel- 
opment of a rigorous mathematical formalism for 
electronegativity equalization based on density- 
functional theory by Nalewajski [ 141 and Mortier 
et al. [15]. Methods derived from this formulation 
predicted atomic charges and other properties that 
were geometry and connectivity dependent (for a 
review of these early methods, see refs. 1161 and 
[ 171). Following these developments, several varia- 
tions of the EE method have been proposed [ 15-29, 
451. For the most part, these methods have been 
used to determine atomic charges [15-231, model 
chemical binding [ 24-26], and analyze charge 
transfer in chemical bond formation (27-291. Re- 
cently, electronegativity equalization has been used 
to probe reactivities using charge sensitivity analy- 
sis [30-321, and provide a method for determining 
dynamic charges for molecular simulations [18, 
331. In general, these methods rely on empirical 
parametrizations of individual atoms, and hence, 
have the advantage that they can be applied to any 

molecule. However, for highly reliable representa- 
tions of the electron density, as is required for 
molecular simulations, no single set of atomic 
parameters appears to be universal in providing 
sufficient accuracy for a diverse set of molecules. 

In this work, we describe a new general formu- 
lation of the classic electronegativity equalization 
principle that can be applied to molecular simula- 
tions. The method provides a model of the electron 
density that gives high accuracy in the presence of 
relatively large perturbations such as those arising 
from interactions with other molecules or applied 
fields, and is "exact" in the limit that these interac- 
tions vanish. The method has the additional ad- 
vantage that it can be systematically improved. 
The second section gives a general derivation of 
the electronegativity equalization equations. The 
third section outlines how the equations can be 
solved using basis functions for the density re- 
sponse. The fourth section gives formulas for sev- 
eral useful chemical properties derivable from the 
density. The fifth section applies the method to 
molecules in the presence of perturbing fields. 
Finally, the sixth section discusses the advantages 
and disadvantages of the present method, and its 
relation with others proposed in the literature. The 
derivation and implementation of the EE formal- 
ism presented here was developed in collaboration 
with W. Yang. 

Derivation of Electronegativity 
Equalization Equations 

Consider a ground-state molecular system char- 
acterized by electron density p,(r). From the first 
Hohenberg-Kohn theorem [l], we know that po 
determines all ground-state properties of the sys- 
tem, in particular p, determines (to within a trivial 
additive constant) the external potential v,, and 
total energy E,. Within the Kohn-Sham [2] (KS) 
formulation of density-functional theory, the total 
energy is written: 
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where 7',[ p ]  is the Kohn-Sham noninteracting ki- 
netic energy, J[ p ]  is the classical electrostatic en- 
ergy of the electrons, E X c [  pl is the exchange- 
correlation energy, and V,, is the nuclear-nuclear 
repulsion energy. The functional F[ pl is a univer- 
sal functional that depends only on the electron 
density. The second Hohenberg-Kohn theorem 
establishes a variational principle for the ground- 
state energy in terms of the electron density, 

for any N-representable trial density 6. Hence, the 
ground-state electron density satisfies the station- 
ary condition 

where the chemical potential p is the Lagrange 
multiplier on the normalization constraint 
N[ p ]  = / p(r) d 3 r .  The Euler-Lagrange equation 
for the ground-state energy and density is thus 

Consider now the effect of a perturbation 6dr) on 
the ground-state system. The expression for the 
perturbed energy to second-order is 

6 E  
= E,  + /[ -1 6p(r) d3r  

Po 

X Sp(r') d 3 r d 3 r '  + / 6p(r) 6u(r) d 3 r  (5) 

Note that in the ground-state, the variations 6dr) 
and Sp(r) are not independent, but are related 
through the Euler-Lagrange equation (eq. (4)). The 
first functional derivative term in eq. (5) is the 
chemical potential p, of the unperturbed system 

eq. (4). Thus eq. (5) simplifies to 

x 6p(r') d 3 r d 3 r '  (6) 

The new Euler-Lagrange equation for the per- 
turbed system is given by 

Equation (7) is the fundamental equation from 
which the present formulation of electronegativity 
equalization is based. 

Solution of the EE Equations in 
a Finite Basis 

In this section, we show how the EE equations 
can be solved using basis functions for the density 
response 6p(r). We further suggest a semi- 
empirical approximation for the second functional 
derivative term in eq. (7) that is shown later to 
give a simple but useful model for polarization 
and charge transfer. 

If we represent variations of the density Sp(r) 
as a linear combination of L2 normalized basis 
functions {cp,) such that (cp, I cp,) = 1, 

where (c,] are coefficients to be determined from 
matrix analog of the stationary condition eq. (3) 

(9) 
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where E [  _c] and N[ g3 are given in matrix form by 

where No is the number of electrons in the unper- 
turbed system, and the matrix and vector elements 
are defined by 

The matrix q is called the hardness matrix. Appli- 
cation of eqr(9) using eqs. (10) and (11) results in 
the linear equation 

- 

77.g + 6 ~ -  Ap._d=O (12) - - - 

which, assuming - q is nonsingular, has solution - 

(13) 

The Lagrange multiplier A p  is chosen to satisfy 
the normalization condition gT * = N - No = AN: 

AN + dT * * Su 

where AN is the amount of charge transfer that is 
allowed. Thus far, we have not explicitly specified 
the form of the matrix elements ( T ) ~ ~ .  - In fact, the 
form of the two-electron operator 

- 

+ [  62Exc ] (15) 
6pW 6p(r’) 

is not known because the kinetic energy and ex- 
change correlation functionals are not known in 
terms of the density. We are thus inspired to 
introduce the following extended Hiickel-type 

approximation [35]: 

1 
Ir - r’l + (qJ- lqj)  for i?t: j (16b) 

where the {XI are empirical parameters, and K is 
taken to be unity. 

The EE equations (12-16) were derived for any 
set of normalized basis functions of the form eq. 
(81, and can be solved to give the density response 
Sp(r). With the use of density basis functions, there 
is no built-in constraint that the electron density 
after equalization be everywhere strictly positive; 
however, we anticipate that with appropriate pa- 
rameterization of eqs. (16) this will not be a limita- 
tion to obtaining reliable linear-response informa- 
tion for real physical systems. We next outline 
how other chemical properties can be obtained 
from this procedure. 

Chemical Properties Derivable from 
the Density 

Several useful derivatives can be computed di- 
rectly from the electronegativity equalization 
method presented above. Perhaps the simplest is 
the chemical potential p, defined from density- 
functional theory to be the functional derivative of 
the energy with respect to the electron density (at 
constant external field v), or alternatively, the 
derivative of the energy with respect to the total 
number of electrons [4] 

In the EE framework, the chemical potential fol- 
lows directly from eq. (14). The chemical potential 
of an atom or molecule has been shown to corre- 
spond to minus the electronegativity [lo]. Another 
intuitive chemical property is the hardness q, de- 
fined as the second derivative of the energy with 
respect to the total number of electrons IS], and 
can be evaluated in the present method from the 
matrix equation 
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The Fukui function f(r) is an index of reactivity 
that measures the response of the chemical poten- 
tial to a variation in the external field [36]. The 
Fukui function is computed in the present formal- 
ism in the basis of the density response as 

where 

and p(r) is the vector of basis functions cp,(r). Note 
the F%kui function by this definition is normalized: 

Similarly, the two-variable linear response 
tion [4] is defined as 

and 

where the @ indicates the direct product. Note the 
linear response function satisfies the condition 

(24) 

A closely related quantity to the linear response 
function is the static polarizability tensor Z, de- 
fined as minus the second derivative of the total 
energy wit$ respect to components of the electric 
field 1371 E = (ex, e y ,  e,) 

In the limit of small uniform electric fields, the 
interaction of the response density with the field 

can be written as the scalar product: 

where Zind is the induced dipole Toment, T' is the 
position vector i' = ( x ,  y, z), and _R is defined by 

It follows directly from eq. (22) that the static 
polarizability tensor in the EE model is simply 

In this section, it has been shown how the 
present EE formalism provides a model for the 
linear density response, and several fundamental 
properties of the density. In the following section, 
the reliability of the model is tested. 

Numerical Application 

In this section we apply the present EE formal- 
ism to model the linear density response for a 
series of molecules in the presence of perturbing 
external fields, designed to reflect interactions in 
polar solvents. By expanding the energy about the 
ground-state density, the model begins with an 
"exact" representation of the system in the ab- 
sence of an applied field. The EE parameters for 
each molecule are chosen to optimize the linear 
response of perturbations. Results of EE induced 
dipole moments, polarizabilities, and chemical po- 
tentials are compared with corresponding experi- 
mental and density-functional derived values. 

COMPUTATIONAL PROCEDURE 

Density-functional calculations were performed 
using the Kohn-Sham formulation of density- 
functional theory [21 implemented in a numerical 
self-consistent field (SCF) algorithm [ 381. Electron 
correlation was treated using the Vosko-Wilk- 
Nusair local density approximation (LDA) [39]. 
Atomic orbital basis functions were generated as 
numerical LDA solutions of the KS equations for 
the isolated atoms similar to that of Delley [401. A 
basis set of 3s, and 2p (polarization) functions 
were used for hydrogen atoms, and 4s, 4p, and 2d 
(polarization) functions for second and third row 
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atoms. The numerical integration mesh was chosen 
such that the error in evaluation of the matrix 
elements was (approximately) less than 
Hartree. The convergence criterion for the SCF 
procedure was lop6 Hartree for the total energy 
and Hartree for the classical electrostatic 
component of the energy. The latter was neces- 
sary to achieve convergence of induced dipole 
moments. 

Electronegativity equalization parameters were 
calculated for molecules by fitting to the LDA 
induced moments. Dipole moments were induced 
by introducing a perturbing field at several points 
outside the molecular surface as follows. A 
”solvent-accessible surface” was defined as the 
surface generated by the van der Waals radii of the 
atoms plus a probe radius of 2.65 a, (approxi- 
mately the radius of a water molecule). Points 
roughly evenly spaced on the surface were chosen 
at a density of 0.05 a;‘. At each surface point R, a 
Gaussian probe density was added of the form 

where the exponent 5 was 1.0 a;’, and the net 
charge Q was 0.k.  The sign was chosen such 
that the probe interaction with the molecule was 
electrostatically favorable. At each surface point, 
the static potential of the probe was used as an 
applied field, and the corresponding molecular 
density was computed from SCF solution of the KS 
equations. Hence, induced dipole moments and 
related properties were obtained separately for 
each applied field. 

Basis functions for representation of the EE den- 
sity response eq. (8 )  were chosen as normalized 
atom-centered ns Slater-type functions. The Slater 
exponents were obtained by optimizing the fit of 
the quantum mechanically computed induced 
dipde moments to the corresponding values ob- 
tained from the EE procedure without additional 
parameters [i.e., the {fJ parameters in eqs. (16) set 
to zero]. 

For a given basis, each molecule requires 1 
parameter {fi} per basis function. The {fi] parame- 
ters were determined by least-squares fitting of the 
LDA and EE induced dipole moments as de- 
scribed in the previous paragraph for the Slater 
exponents. In all fitting procedures, EE parameters 
and Slater exponents of topologically equivalent 
atoms were constrained to be identical (i.e., for 
methanol, one of the three methyl hydrogens is not 

symmetry equivalent, but is topologically equiva- 
lent). Evaluation of the total energy in eq. (10(a)), 
in the case where charge transfer is allowed 
(AN = j6p(r) d3r  # 01, requires one additional 
parameter, the molecular chemical potential p,. 
However, if no charge transfer is considered, ex- 
plicit dependence of this term vanishes, and only 
the Lagrange multiplier A p  [eq. (14)] is required. 
Although we do not consider intermolecular charge 
transfer explicitly, we do discuss the relative EE 
and LDA chemical potentials for the perturbed 
systems. For this purpose, we estimate the LDA 
chemical potential as the eigenvalue of the highest 
occupied KS molecular orbital [4]. The esti- 
mated LDA chemical potential for each 
system in the absence of an applied field perturba- 
tion provides the value of p,. 

Results and Discussion 

Table I compares dipole moment, chemical po- 
tential, and polarizability results of the present EE 
procedure with corresponding experimental and 
LDA density-functional values. Corresponding 
EE parameters are listed in Table 11. Overall, the 
EE dipole moments agree well with the corre- 
sponding LDA values (relative errors of ca. 4-8%). 
For planar molecules, however, the error in the 
induced dipole moment is considerably increased. 
This follows from the use of spherical atom- 
centered basis functions for the density response, 
which in the case of a planar molecule, disallows 
polarization out of the plane. This problem has 
been pointed out by Dinar [41], who proposed a 
modified procedure that coupled standard EE 
methods with a Drude model for atomic dipole 
polarizabilities. Inclusion of atomic dipolar polar- 
izability is a straight forward extension of the 
formalism presented here if density basis functions 
with higher multipolar character are introduced. 
These possibilities will be explored in future work 
using Gaussian basis functions, so that analytic 
evaluation of the appropriate integrals is facili- 
tated 1341. 

Polarizability is fundamental to atomic and 
molecular interactions in chemistry. Density- 
functional theory provides a particularly promis- 
ing approach for obtaining polarizabilities since it 
accounts for the effects of electron correlation [42]. 
Applications using the local density theory [37] 
have been successful in predicting molecular po- 
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TABLE I 
Comparison of dipole moments D, chemical potentials p, and polarizabilities aa. 

f 
Molecule rms Db rel. err DC rms p* rel. err pc ae aEXP 

H2O 
NH3 
PH3 
CH.4 
CH,OH 
CH,F 
CH3CI 
CH,NH, 
CH,NO 
CH20 
CH3CH0 
CH3CH3 
CH30CH3 
HCOOH 

4.8 X lo-‘  

5.0 X lo - ‘  
1.8 X lo-‘  
2.4 X lo-’  

3.2 x lo - ‘  

1.9 x 10-2 
5.5 x 10-2 

7.3 x 10-2 

3.9 x 10-2 
3.5 x 10 - 2  

5.4 x 10-2 
4.5 x 10-2 

2.8 X 

5.0 X lo - ’  

0.10 
7.7 x 10 -. 
0.15 
0.16 
5.5 x 10-2 
4.1 X lo - ’  
0.10 
7.2 X 
7.5 x 10-2 
8.6 X lo-’  
5.3 x 10--2 
0.21 
0.14 
0.12 

3.1 x 10-3 
3.3 x 10-2 
2.7 x 10-3 
3.7 x 10-3 
7.0 x 10-3 
4.5 x 10-3 
1.2 x 10 - 2  

4.3 x 10-3 
5.7 x 10-3 

1.9 x 10-3 
3.2 x 10-3 
2.3 x 10-3 

8.8 X lo-’  

1.0 x 10 - 2  

1.1 x 10-2 

1.1 x 10-2 
1.0 x 10-2 
3.3 x 1 0 - 2  

1.3 X lo-’ 

1.5 X lo - ‘  
4.1 X 

1.7 X 
2.6 X 
5.1 X lo-‘  

1.6 X lo-’  

4.4 x 10-2 

6.9 x 1 0 - 3  

9.1 x 10-3 

0.92 
2.18 
4.54 
2.20 
2.97 
2.42 
4.16 
3.70 
3.17 
1.87 
4.15 
4.31 
4.77 
2.31 

1.45 
2.81 
4.84 
2.59 
3.29 
2.97 
4.72 
4.70 
4.08 
2.45 
4.59 
4.43 
5.29 
3.40 

a Statistical errors for each molecule were derived from data sets consisting of corresponding quantities (dipole moments or 
chemical potentials) obtained from the EE procedure and from SCF density-functional calculations at each external field 
perturbation. 

Root-mean-square deviations of the dipole moments D (a.u.; 1 au = 2.54 Debye) from SCF density-functional calculations and 
from EE. 

The relative error of data set 1x1 with respect to reference data set { y )  was computed as ( ( x  - y)‘))”* / ( y 2 ) ” * .  
Root-mean-square deviations of the chemical potentials p (Hartree) from SCF density-functional calculations and from EE. The 

Effective polarizabilities (A3) calculated from EE parameters fit to LDA dipole moments. 
chemical potentials from t$e DF calculations were taken as the eigenvalues of the highest occupied molecular orbitals 

‘Experimental polarizabilities (A3) (ref. 1441). 

larizabilities [43]. Here we focus on obtaining ef- 
fective molecular polarizabilities (higher order hy- 
perpolarizabilities included implicitly) by fitting 
the EE parameters to dipole moments induced in 
fairly large nonuniform fields, designed to reflect a 
highly polar solvent environment. 

The effective EE polarizabilities parametrized 
from the LDA calculations (Table I) are fairly well 
correlated with experimental values. In all cases, 
the calculated polarizability slightly underesti- 
mates the corresponding experimental value. This 
is mainly attributed to the error introduced by the 
finite orbital basis sets used in the LDA calcula- 
tions [43], which tend to underestimate the polar- 
izability, especially for large fields (for example, in 
the case of NH,, if a much larger 5442/333 basis 
set is used, the EE/LDA polarizability increases 
from 2.18 A’ to 2.40 A3). Further error is intro- 
duced due to the limited basis set used for the 
density response, as illustrated in the extreme case 
of planar molecules described above. Presumably, 
this can be corrected by inclusion of more com- 
plete basis functions with higher multipolar char- 
acter. In addition, strong perturbing fields outside 
the molecular surface have polarization effects that 

are nonlinear. The EE procedure, being intrinsi- 
cally a linear response theory, must therefore im- 
plicitly account for nonlinear effects. Although the 
effective EE polarizabilities parametrized for the 
”strong fields” here underestimate the experimen- 
tal polarizabilities, the close agreement between 
the EE and LDA induced dipole moments indi- 
cates the model is adequate. 

In addition to the induced moments, it is inter- 
esting to consider the EE and LDA predicted 
chemical potentials. We have estimated the LDA 
chemical potential from the highest occupied KS 
eigenvalue [4]. The EE chemical potential 
was calculated via eq. (14). These two quantities 
are remarkably well correlated (Fig. 1). The maxi- 
mum relative error in the chemical potential of all 
the molecules considered is 5.1% (CH,CHO). The 
striking agreement of the EE and estimated LDA 
chemical potentials, which were not considered 
explicitly in the EE parameterization, is intriguing. 
Moreover, it is suggestive that coupling of the EE 
procedure with density-functional methods, for ex- 
ample in hybrid quantum mechanical/molecular 
mechanical simulation force fields, may be 
possible. 
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TABLE I1 
Electronegativity equalization parametema 

~~ ~~~~~~~ ~ 

Molecule Atom 5 f Molecule Atom t f 

HZO 

NH3 

PH3 

CH, 

CH30H 

CH3F 

CH3CI 

CH3NH2 

0 
H 
N 
H 
P 
H 
C 
H 
C 

0 

C 
H 
F 
C 
H 
CI 
C 

N 

HC 

HO 

HC 

HN 

1.825 
2.396 
1.538 
1.938 
1.589 
1.642 
1.980 
2.042 
1.526 
1.967 
2.784 
3.901 
4.002 
2.068 
3.179 
1.114 
1.658 
2.997 
1.530 
1.856 
2.477 
3.433 

0.0 
0.0 

- 4.0 
- 0.095 
0.048 

- 0.002 
- 0.088 
0.0 
0.056 
0.01 0 

- 0.043 
- 0.050 
- 0.001 
0.0 
0.0 

- 4.0 
- 0.007 
0.155 
0.671 
0.054 

- 0.320 
-0.103 

CH,NO C 
HC 

HN 

0 
N 

CH20 C 

CH,CHO c, 
Hc1 
CZ 
HC2 

H 
0 

0 
CH3CH3 C 

H 
CH30CH3 C 

H 
0 

HCOOH C 
HC 
0, 
0 2  

HO 

1.524 
1.839 
2.391 
3.1 18 
2.820 
1.315 
2.074 
2.576 
1.405 
1.865 
8.0 
2.990 
3.588 
1.976 
2.31 5 
2.964 
2.985 
1.419 
1.795 
2.699 
2.345 
3.355 
2.668 

-0.141 
- 0.01 1 
- 0.008 
0.01 8 
0.0 

- 4.0 
0.0 
0.01 7 

- 0.593 
- 0.045 
4.0 
0.024 
0.01 9 

-0.133 
- 0.040 
-0.187 
- 0.01 4 
0.276 
0.1 16 
0.023 
0.010 

- 0.074 
- 0.033 

* Electronegativity equalization parameters: Slater exponents 
eq. (16). All units are atomic units. 

for ns Slater-type density basis functions, and f parameters of 

Relation to Other EE Models 

Two related methods based on electronegativity 
equalization have been proposed by Mortier et al. 
[151, and later by Rappi5 and Goddard [181. The 
former has been employed mainly as a method for 
estimating atomic charges in molecules based on 
parameterization to STO-3G Mulliken charges 
[15, 161, and more recently for probing reactiv- 
ity using sensitivity coefficients from density- 
functional theory [31, 321. The latter method [181 
has been developed to provide a dynamic charge 
for molecular simulations. Both methods are based 
on the approximation of the molecular energy as a 
second-order Taylor expansion about the neutral 
atoms. The molecular charge distribution and en- 
ergy are obtained as solutions to the EE equations 
of the neutral atoms assembled to form a molecule. 
The methods require two parameters per atom: an 
effective electronegativity (negative of the chemi- 
cal potential), and hardness (in the latter method, 
the hardness appears as the atomic electrostatic 
self-energy). These atomic parameters are assumed 

to be transferable for all molecules. Mortier et al. 
[ 171 have demonstrated that this approximation is 
remarkably robust, and gives useful qualitative, 
and sometimes even quantitative insight to a vari- 
ety of chemical problems. Nonetheless, the repre- 
sentation of the molecular energy and charge dis- 
tribution as an expansion about the neutral atoms 
is considerably limited in its ability to give high 
accuracy. Consequently, a new method that pro- 
vides high accuracy and can be systematically 
improved is required for reliable molecular 
simulations. 

The present EE formulation accommodates these 
difficulties. Since the total molecular energy is 
expanded about the ground-state molecular den- 
sity, the exact energy and charge distribution are 
recovered in the absence of an applied field. For a 
system of interacting molecules, the present 
method provides a model for the linear density 
response of each molecule in the field of the other 
molecules, with the possibility of charge transfer. 
As demonstrated in the previous section, this 
method reproduces well the density response, even 
with a very simple spherical atom-centered basis. 
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0.0 - 

-0.1 - 

h 

a -0.2 - 
m 
v 

-0.4 1 / 
-0.5 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 
CL(a.u.) 

FIGURE 1. Linear regression of the chemical potential 
obtained from EE procedure ( p)  and estimated from the 
eigenvalue of the KS-LDA highest occupied molecular 
orbital Data shown is for all molecules listed in 
Table I for each applied field perturbation. Note: the EE 
parameters were fit to induced dipoles moments only; 
hence, the observed correlation of the chemical 
potentials is not a result of explicit fitting. 

More importantly, systematic improvement of the 
methodology is straightforward by inclusion of 
more complete density basis functions, not neces- 
sarily a tom-centered or spherical. Exploration of 
such possibilities are currently underway [ 341. 

The methods proposed by Mortier et al. [151, 
and Rapp6 and Goddard [18] are in fact particular 
cases of the general formalism developed here. To 
illustrate this, consider the integral Taylor expan- 
sion eq. (5) to be chosen about the neutral-atom 
ground-state densities. If the density basis func- 
tions are chosen to be delta functions at the atomic 
positions (neglecting the infinite electrostatic self- 
energy term in the diagonal elements of the hard- 
ness matrix), the present model reduces to that 
proposed by Mortier [151. In this case, the empiri- 
cal parameters are the effective atomic chemical 
potentials and hardnesses. Alternately, if atom- 
centered ns Slater-type functions are used as basis 
functions, and the empirical parameters {fi} of 
eq. (16) are set to zero, the present model reduces 
to that proposed by Rappi. and Goddard [181. The 
latter method parameterizes the diagonal elements 
of the hardness matrix by adjusting the Slater 
exponents of the density basis functions. The cor- 

responding electrostatic self-energies play the same 
role as the atomic hardness parameters of Mortier 
[15]. Note both of these methods treat the off- 
diagonal elements of the hardness matrix as being 
purely Coulombic in nature. 

The present electronegativity equalization 
method provides a particularly convenient frame- 
work for modeling polarization in molecular sim- 
ulations. Electrostatic fields in molecular sim- 
ulations are typically modeled by static charge 
distributions obtained from fitting to gas-phase 
electrostatic potentials. For such models that do 
not attempt to take into account polarization im- 
plicitly, the present method is ideal. This derives 
from the fact that the static charge distribution is 
chosen to directly reflect the zero order term in the 
Taylor expansion eq. (5) corresponding to the 
ground-state electron density in the absence of a 
perturbing field. Hence, parameters for the density 
response are uncorrelated with parameters used to 
represent the static charge distribution. In this way, 
improvement of force field models by inclusion of 
additional polarization terms does not require 
reparameterization of existing static terms. 

It should be pointed out that the present model 
has been introduced specifically as an empirical 
model for polarization and charge transfer, 
derived from the physics of density-functional 
theory. The use of basis functions for the linear 
density response illustrates that one should be 
careful in interpreting the parameters of this model 
as having any well defined "atomic" character, 
since there has been no effort here to rigorously 
define an atom in a molecule. If such an interpreta- 
tion is sought, for example, in the analysis of 
wavefunctions from electronic structure calcula- 
tions, one must adopt a rigorous definition of an 
atom in a molecule, and employ appropriate con- 
straints. Such work has been explored extensively 
by Cioslowski [27-291. 

Conclusion 

A general formulation of the electronegativity 
equalization principle has been presented, and cast 
in a form that can be solved using basis functions 
for the linear density response. A simple semi- 
empirical representation of the hardness matrix is 
suggested that requires only one parameter per 
basis function. Numerical application using a basis 
set of atom-centered ns Slater-type functions 
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demonstrates that the method reproduces well in- 
duced dipole moments and chemical potentials 
derived from LDA density-functional calculations. 
The method has the advantages that it recovers the 
“exact” ground-state density in the absence of an 
applied field, provides high accuracy in the pres- 
ence of relatively strong perturbations, and can be 
systematically improved by inclusion of more 
complete basis functions for the density response. 
The present formulation generalizes many of the 
EE methods that have been proposed in the litera- 
ture, and forms the foundation for future work to 
model polarization and charge transfer effects in 
molecular simulations. 
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